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COTS SRAM-Based FPGAs in Space

• Advantages
– 10-100x Processing Performance over Anti-fuse FPGAs
– Reprogrammable

• Resource Multiplexing
• Multi-mission, multi-sensor

• Mission Obsolescence
• Update Algorithms

• Design Flaws
• Correct in Orbit

• Gaining Popularity in Space Systems
– MARS 2003 Lander (JPL); XQR4062XL
– MARS 2003 Rover (JPL); XQVR1000
– GRACE (GSFC); XQR4036XL
– FedSat (Univ. of Australia); XQR4036XL
– OPTUS (Raytheon); XQVR300
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Disadvantages of SRAM-Based FPGAs in Space

• Radiation Effects
– Configuration and Logic are susceptible
– Single Event Upset (SEU)
– Single Event Functional Interrupt (SEFI)

• Power
– Antifuse is more power savvy (20-50% less)
– Greater Horsepower = Greater Power Consumed

• SRAM FPGAs vs Anti-fuse FPGAs
– Benefits

• ~10x-100x Performance Gain
•  ~10x Cost Savings
• ~100-1000x Price Performance Gain

– Costs
• Need Software Tools

Can we develop software tools to BOTH mitigate

radiation effects AND lower power consumption?
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Radiation Design and Verification Flow

RHinO Radiation Mitigation Tool
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• Typically 3 levels of mitigation
– Feedback paths
– Input and Feedback paths
– Full TMR

• Focused on persistent error mitigation
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Experimental Results –
MTBF vs. Mitigation Level

•AP-8 Solar Minimum, JPL Solar Proton Quiet, CRÈME 96 Solar Minimum
•GPS orbit (22,200 km altitude, 55° inclination)
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Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, and Michael J. Wirthlin,

“Improving FPGA Design Robustness with Partial TMR”, IEEE International Reliability

Physics Symposium (IRPS) pp. 226-232, April 2006.
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Power Optimization Approach

• Approach:
– Interoperate with existing tool flows
– No circuit functionality modifications
– Single pass optimizations

• Provide power data to Placement
and Routing tools

• Translate power to timing or
placement constraints
– Minimize clock/wire lengths of high

power nets

• Developed 4 optimization algorithms
– Clock tree paring, Slack minimization, 2-

terminal net co-location, Area
minimization

• Verify power optimization
approaches
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Low-power Intelligent Tool Environment (LITE)

• CAD tool for power
investigation and optimization

• Two views:
– Instantaneous vs. cumulative

power consumption over time
– Sorted tree view of worst offenders

• More rapidly identify
inefficient circuits and
operating modes

• Simulation trigger on power
specification

• Integrated cross-probing with
existing JHDL tools

– Unified Environment
– Allows Rapid Experimentation
– Smart Re-use of CPU Memory

Power Visualization JHDL Design Environment

Cross-probing



Slide 9

Low-power Intelligent Tool Environment (LITE)
Power Optimization Results
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Up to 19.4% maximum power reduction.
Average power reduction is 10.2%.

Techniques do not modify functionality

Compliant with COTS tool flow

Original user constraints maintained

Techniques can be combined
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M. French, L. Wang, M. Wirthlin, "Power

Visualization, Analysis, and Optimization Tools for

FPGAs," IEEE Symposium on Field-Programmable

Custom Computing Machines, April 2006.
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Benchmark Application

• 3x3 Image Convolution
– 1024 x 1024, 8 bit
– Metrics: throughput, power,

reliability

• Consider both kernel and
system implementation

– Memory, I/O accesses
– State Machines
– System Throughput, Power …
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Partial TMR Resource Utilization

 Target Device: Virtex-II 1000
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• Partial-BLTMR TRAD:
–  35% cells are triplicated, 1870 new instances are added

• Full-BLTMR TRAD:
– 100% cells are triplicated, 5342 new instances are added
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Benchmark Power Distribution
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Benchmark Power Optimization

• Baseline Power Improvement: 8.4%
• Partial-BLTMR Power Improvement: 4.5%
• Full-BLTMR Power Improvement: 14.2%



Slide 14

Power Optimization Algorithm Analysis

• Which algorithms perform best with redundancy
mitigation techniques?

• 2-terminal net co-location
– TMR designs respond well
– More opportunities to optimize signal power
– Less adverse effects on crowded circuits.

• Slack minimization
– Some savings for all three designs (baseline, partial, full)
– Best for non-TMR circuit

• Small circuits have more slack and thus have more opportunity
to optimize

• Clock paring
– Best approach
– Universal power consumer
– All designs yield good results



Slide 15

Mitigation Validation: SEU Emulation

• Fault injection performed
in hardware to identify the
number of programming
bits that can cause output
errors if changed (i.e.,
“sensitive programming
bits”)

• These bits are then
processed with our SEU
persistence simulator to
evaluate how persistent
errors are after the
programming data erors
have been corrected (i.e.,
“persistent error
programming bits”)

• Identical hardware used for
radiation testing
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Device



Slide 16

Image Convolution Designs: SEU Emulator
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Accelerator Results: Image Convolution Design
(Adjusted for BRAM upsets)
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Image Convolution: SEU Emulation (Summary)

• Impact of full TMR vs. no TMR
– Sensitivity: 93% reduction
– Persistence: 90-93% reduction
– Area: 400% more slices (5x), 290% more LUTs (3.9x),

200% more BRAM/Multipliers/flip-flops (3x)
– Not 100% since clocks and other circuit inputs/outputs

not triplicated, but BLTMR working well

• Impact of partial TMR vs. no TMR
– Partial mitigation covers only the feedback portions of

the circuit (inputs and outputs of feedback section are
unmitigated)

– Sensitivity: 12-13% reduction
– Persistence: 41-56% reduction (targeted TMR working!)
– Area: ~150% more slices (2.5x), 204% more LUTs (3.04x),

52% more flip-flops (1.52x), no additional BRAM or
Multipliers
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Impact of Low-power Optimizations on SEU
Sensitivity

• Low-power optimizations on EDIF netlists through
timing and location constraints increased the design
sensitivity

– 6.4 – 10.4% increase in sensitive bits compared to baseline
(Relative Errors)

• However with 3.7 million bits, absolute increase in
sensitive bits is small

– Total sensitive bits increase by ~0.00 – 0.08% (Absolute Errors)
– Minimal change to cross section

• Why?
– Hypothesis: Nearly identical logic and memory resources

suggests that it has to be related to routing, so the average
number of programming bits used per wire is higher.

• This may be true despite the decrease in clock routing
since the overall number of wires in the design dwarfs the
number of clock wires.

• May also be a result of increased routing congestion as
well as distances between resources.
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Sensitivity Increase with Low-Power Optimization

Baseline (No TMR or power opt) Low-power Baseline (No TMR, power opt)

FPGA Design Layout is greatly affected by the power optimization.
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Sensitivity Increase with Low-Power Optimization

Partial TMR (partial TMR, no

power opt)

Low-power, Partial TMR

(partial TMR, power opt)

FPGA Design Layout is greatly affected by the power optimization.
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Sensitivity Increase with Low-Power Optimization

Full TMR (full TMR, no power

opt)

Low-power Full TMR (full

TMR, power opt)

FPGA Design Layout is greatly affected by the power optimization.
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Summary

• Partial TMR allows variable reliability and power utilization
– Enables 25 – 50% reduction in size and power

• Power optimization techniques for ground-based circuits work
well on TMR designs as well

– Up to 14% dynamic power reduction

• Optimizing routing for power has minimal impact on reliability
– ~0.00 – 0.08% increase in absolute sensitive cross section

• SEU emulator key for expediting and facilitating laboratory and
relative environment testing

– Identical hardware and software environment
– Selectively corrupt every bit

• Multi-Bit Upsets (MBUs) studied
– Not yet a problem at 130nm, concern at 90nm and beyond

• http://rhino.east.isi.edu
– Code open source and downloadable
– 15 conference and journal papers

COTS FPGA devices can be meet space

environment demands with common CAD tool
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Reconfigurable Hardware in Orbit (RHinO)

Objective

• Facilitate and Automate Designing an SRAM-

based FPGA Circuit for the Space Environment

• Create a CAD tool Environment for Xilinx

Virtex-II SRAM-based FPGAs capable of

•Mitigating Transient Effects

•Minimizing Power Utilization

• Provide an Extensible Infrastructure for

Future Tests, Techniques, and Architectures

Accomplishments
Developed end-to-end tools for Virtex2 radiation mitigation and power optimization that interoperate

with the COTS tool flow

Radiation Mitigation: Developed partial TMR technique which results in 25 to 50% reduction in size and

power

Power Optimization: Developed power optimization techniques that yield 5 to 15% dynamic power

reduction on partially TMR circuits

An SEU Hardware Emulator for Virtex2 was developed, which predicts radiation results and reduces

the amount of necessary radiation testing

All tools and emulators verified in experiments at U.C. Davis and Lawrence Berkeley radiation facilities

PI: Matthew French, USC / ISI

CoI: Paul Graham, Los Alamos National Labs

          Michael Wirthlin, Brigham Young University

SEU Emulator

TRLin = 3;    TRLout= 6

Power Tools


